(8-3i)^2/4-4i

Simple and best practice solution for (8-3i)^2/4-4i equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (8-3i)^2/4-4i equation:


i in (-oo:+oo)

((8-(3*i))^2)/4-(4*i) = 0

((8-3*i)^2)/4-4*i = 0

((8-3*i)^2)/4+(-4*4*i)/4 = 0

(8-3*i)^2-4*4*i = 0

9*i^2-64*i+64 = 0

9*i^2-64*i+64 = 0

9*i^2-64*i+64 = 0

DELTA = (-64)^2-(4*9*64)

DELTA = 1792

DELTA > 0

i = (1792^(1/2)+64)/(2*9) or i = (64-1792^(1/2))/(2*9)

i = (16*7^(1/2)+64)/18 or i = (64-16*7^(1/2))/18

(i-((64-16*7^(1/2))/18))*(i-((16*7^(1/2)+64)/18)) = 0

((i-((64-16*7^(1/2))/18))*(i-((16*7^(1/2)+64)/18)))/4 = 0

((i-((64-16*7^(1/2))/18))*(i-((16*7^(1/2)+64)/18)))/4 = 0 // * 4

(i-((64-16*7^(1/2))/18))*(i-((16*7^(1/2)+64)/18)) = 0

( i-((16*7^(1/2)+64)/18) )

i-((16*7^(1/2)+64)/18) = 0 // + (16*7^(1/2)+64)/18

i = (16*7^(1/2)+64)/18

( i-((64-16*7^(1/2))/18) )

i-((64-16*7^(1/2))/18) = 0 // + (64-16*7^(1/2))/18

i = (64-16*7^(1/2))/18

i in { (16*7^(1/2)+64)/18, (64-16*7^(1/2))/18 }

See similar equations:

| 9.96=6.8 | | 121=(x+22) | | 596y-3.08=0.9y | | 0.1x^2+71x+100=0 | | -2p=-22 | | 4m+mp+3p+mp= | | 1.596y-3.0=0.9y | | 7=91/w | | (2x-47)+(x+2)=180 | | 18.35=2.7y | | 3x-2(3-2x)=18 | | s^3-5s^2-8s+40= | | -11p=44 | | -4+7=17 | | m+3=s+15-p | | 8x+7=7x+11 | | [(-23)+(-8)]+14= | | X^2-54x+648=0 | | 1/20=x/100 | | 9.6=3x | | 74+(5x)+(3x+2)=180 | | 5(x-10)=15 | | 5/2x1/3 | | X+9=2x+17 | | 4x+6=(-14) | | 8(v+4)=-9v-19 | | 5x-6=8x+18 | | (x-46)+(x+4)=180 | | 18X^2-54x+36=0 | | x+x+30+20+(x+30)=180 | | -5y+4(-7+9)-7(7+3y)=-7 | | 2x-z=3 |

Equations solver categories